Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism.
نویسندگان
چکیده
The suicide inactivation mechanism of tyrosinase acting on its substrates has been studied. The kinetic analysis of the proposed mechanism during the transition phase provides explicit analytical expressions for the concentrations of o-quinone against time. The electronic, steric and hydrophobic effects of the substrates influence the enzymatic reaction, increasing the catalytic speed by three orders of magnitude and the inactivation by one order of magnitude. To explain the suicide inactivation, we propose a mechanism in which the enzymatic form E(ox) (oxy-tyrosinase) is responsible for such inactivation. A key step might be the transfer of the C-1 hydroxyl group proton to the peroxide, which would act as a general base. Another essential step might be the axial attack of the o-diphenol on the copper atom. The rate constant of this reaction would be directly related to the strength of the nucleophilic attack of the C-1 hydroxyl group, which depends on the chemical shift of the carbon C-1 (delta(1)) obtained by (13)C-NMR. Protonation of the peroxide would bring the copper atoms together and encourage the diaxial nucleophilic attack of the C-2 hydroxyl group, facilitating the co-planarity with the ring of the copper atoms and the concerted oxidation/reduction reaction, and giving rise to an o-quinone. The suicide inactivation would occur if the C-2 hydroxyl group transferred the proton to the protonated peroxide, which would again act as a general base. In this case, the co-planarity between the copper atom, the oxygen of the C-1 and the ring would only permit the oxidation/reduction reaction on one copper atom, giving rise to copper(0), hydrogen peroxide and an o-quinone, which would be released, thus inactivating the enzyme.
منابع مشابه
The mechanism of suicide-inactivation of tyrosinase: a substrate structure investigation.
Tyrosinase is a copper-containing mono-oxygenase, widely distributed in nature, able to catalyze the oxidation of both phenols and catechols to the corresponding ortho-quinones. Tyrosinase is characterised by a hitherto unexplained irreversible inactivation which occurs during the oxidation of catechols. Although the corresponding catechols are formed during tyrosinase oxidation of monophenols,...
متن کاملSubstrate-dependent kinetics in tyrosinase-based biosensing: amperometry vs. spectrophotometry.
Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose catalytic activity results in o-quinone products. We further compare our results for four monophen...
متن کاملAdsorption of Phenolic Compounds onto the Activated Carbon Synthesized from Pulp and Paper Mill Sludge: Equilibrium Isotherm, Kinetics, Thermodynamics and Mechanism Studies
A new activated carbon was produced from pulp and paper mill sludge as a low cost precursor via chemical activation by zinc chloride. The activated carbon was successfully used for the adsorption of phenol and two of its derivatives, i.e. 2-chlorophenol and 4-nitrophenol from aqueous solutions. The characterization of the prepared activated carbon demonstrated high textural properties for the s...
متن کاملDual Effects of Alpha-Arbutin on Monophenolase and Diphenolase Activities of Mushroom Tyrosinase
The effects of α-arbutin on the monophenolase and diphenolase activities of mushroom tyrosinase were investigated. The results showed that α-arbutin inhibited monophenolase activity but it activated diphenolase activity. For monophenolase activity, IC50 value was 4.5 mmol · L(-1) and 4.18 mmol · L(-1) of α-arbutin could extend the lag time from 40.5 s to 167.3 s. Alpha- arbutin is proposed to b...
متن کاملThe inactivation of invertase by tyrosinase. II. The influence of copper and gold on the oxidation of invertase and pepsin.
Previous studies from this laboratory have demonstrated the oxidation of certain proteins by tyrosinase (1, 2) and the inactivation of invertase by tyrosinase (3, 4). Different tyrosinase preparations vary greatly in their ability to inactivate invertase; in particular, certain dialyzed or very highly purified tyrosinase solutions seem to have lost their ability to oxidize invertase. In Paper I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 416 3 شماره
صفحات -
تاریخ انتشار 2008